Mark Scheme 4729
 January 2006

1	$\tan \theta=1 / 3 \quad\left(\theta=18.4^{\circ}\right.$ at B)	B1		71.6° at C	
	$3 \times \operatorname{Tin} \theta=20 \times 1.5$ musthave two distances and no g	M1		$\mathrm{M}(\mathrm{A})(\mathrm{d}=3 / \sqrt{10})$	
		A1			
	$\mathrm{T}=31.6 \mathrm{~N}$	A1	4		4

$\mathbf{2}$	(i)	$0=50 \sin 25^{\circ} \mathrm{t}-4.9 \mathrm{t}^{2}$	M1		or $0=50 \sin 25^{\circ}-9.8 \mathrm{t} \& 2 \mathrm{t}: 2 \mathrm{x} 2.16$	
			A1			
		$\mathrm{t}=4.31 \mathrm{~s}$	A1	3		
	(ii)	$\mathrm{d}=50 \cos 25^{\circ} \times 4.31$	M1		or $\mathrm{u}^{2} \sin \left(2 \times 25^{\circ}\right) / \mathrm{g}$	$\mathbf{5}$
		195 m	A1 \int	2	$\int 50 \cos 25^{\circ} \mathrm{x}$ their t	

3	(i)a	100 J	B1	1		
	b	7500 Nm	B1	1		
	(ii)	$\begin{aligned} & 400 \cos \alpha \times 25=7500+100 \\ & \int_{\text {for }=a+b} \end{aligned}$	M1		sc N II gets M1A1only.This M1 for total M ($\mathrm{a}=0.08$)\&A1for α	
			A1 $\sqrt{ }$			
		$\alpha=40.5$	A1	3	or 0.707 rads	5

4	(i)	horiz comps in opp direct	B1		at E \& F	
		Right at E + Left at F	B1	2		
	(ii)	$\begin{aligned} & 1.6 \times 9.8 \times 30=20 \mathrm{X} \text { or } \\ & 0.5 \times 30 \mathrm{~g}+0.7 \times 30 \mathrm{~g}+ \\ & 0.2 \times 60 \mathrm{~g}=20 \mathrm{X} \\ & \hline \end{aligned}$	M1		or $10 \mathrm{X}+1.6 \mathrm{gx} 30=30 \mathrm{X} \quad \mathrm{M}(\mathrm{A})$	
			A1		or 10X + $(\ldots=470.4)=30 \mathrm{X} \quad \mathrm{M}$ mark ok without g but 3 parts	
		$\mathrm{X}=23.5 \mathrm{~N}$	A1	3		
	(iii)	$\begin{aligned} & 1.6 \bar{y}= \\ & 20 \times 0.2+20 \times 0.2+40 \times 0.5 \end{aligned}$	M1		must be moments with vert dists	
			A1		or $1.6 \bar{y}=20 \times 0.2 \times 2+40 \times 0.7(22.5)$	
		$\bar{y}=17.5 \mathrm{~cm}$	A1	3		8

5	(i)	$6 \mathrm{~m}=3 \mathrm{mx}+2 \mathrm{my}$	M1		- 3mx ok if clear on diagram	
		$6=3 x+2 y$	A1		m must have been cancelled	
		$\mathrm{e}=1=(\mathrm{y}-\mathrm{x}) / 2$	M1		or $1 / 2.3 \mathrm{~m} .2^{2}=1 / 2.3 \mathrm{mx}^{2}+1 / 2.2 \mathrm{my}^{2}$	
			A1		$6=3 \mathrm{x}^{2} / 2+\mathrm{y}^{2} \quad$ aef	
		$\mathrm{x}=0.4$ or $2 / 5$	A1		sc A1A0 if $\mathrm{x}=2, \mathrm{y}=0$ not rejected	
		$\mathrm{y}=2.4$ or $12 / 5$	A1	6		
	(ii)	4.8 m or $24 \mathrm{~m} / 5$	B1 $\sqrt{ }$		$\int 2 \mathrm{mx}$ their y or 3 m (2-their x)	
		same as original dir. of A	B1	2	use their diagram(or dir. of B)	
	(iii)	$\mathrm{e}=(2.8-1.0) / 2.4$	M1			
		0.75 watch out for \pm fiddles	A1/	2	$\int_{(1.8 / \text { their y) with } 0 \text { B }} \mathrm{e} \theta 1$	10

physicsandmathstutor.com

6	(i)	$\mathrm{x}=7 \mathrm{t}$	B1			
		$\mathrm{y}=-4.9 \mathrm{t}^{2}$ or $-1 / 2 \mathrm{gt}^{2}$	M1		some attempt at vertical motion	
			A1		$\begin{aligned} & \text { sc } y=x \tan \theta-g x^{2} /\left(2 V^{2} \cos ^{2} \theta\right) \\ & \text { with } \theta=0 \text { M1 then } \mathrm{A} 1(\max =2) \end{aligned}$	
		$\mathrm{y}=-\mathrm{x}^{2} / 10 \mathrm{AG}$ (no fiddles)	A1	4		
	(ii)	$-20=-x^{2} / 10$	M1		or $\mathrm{t}=\sqrt{(20 / 4.9) ~ \& ~} \mathrm{x}=7 \mathrm{t}$	
		14.1 m	A1	2	sc B1 for 14.1 after wrong work	
	(iii)	$\begin{aligned} & 1 / 2 \mathrm{mv}^{2}=1 / 2 \mathrm{~m} 7^{2}+\mathrm{mgx} 20 \quad \text { n.b. } \mathrm{v}^{2}=\mathrm{u}^{2} \\ & +2 \text { as gets M0 } \end{aligned}$	M1		OR $\mathrm{V}_{\mathrm{h}}=7$ (B1)	
			A1		$\mathrm{v}_{\mathrm{v}}= \pm 19.8$ (B1) $14 \sqrt{ } 2,2 \sqrt{ } 98$ etc	
		$\mathrm{v}=21 \mathrm{~ms}^{-1}$	A1		$\mathrm{v}=21$ (B1)	
		$\mathrm{dy} / \mathrm{dx}=-2 \mathrm{x} / 10 \& \tan \theta$	M1		$\begin{aligned} & \text { OR } \quad \tan \theta=19.8 / 7 \text { or } \\ & \cos \theta=7 / 21 \text { or } \sin \theta=19.8 / 21 \end{aligned}$	
			A1			
		70.5° to horizontal	A1	6	or $19.5{ }^{\circ}$ to vertical	12

7	(i)	F $=300 / 12$	M1			
		$\mathrm{R}=25$	A1	2		
	(ii)	$\mathrm{P}=17.5 \times 12 \quad\left(\mathrm{R}_{2}=17.5 \& \mathrm{~F}_{2}=17.5\right)$	M1		n.b. B1 only for 210 W	
		$\mathrm{P}=210 \mathrm{~W}$	A1	2	without working	
	(iii)	$500=$ Fx12	M1			
		$\mathrm{F}=41.67$ or 500/12 aef	A1			
		$41.67-25-75 \times 9.8 \sin 1^{\circ}=75 \mathrm{a}$	M1			
			A1			
		$0.0512 \mathrm{~ms}^{-2}$	A1	5	or 0.051	
	(iv)	$\mathrm{PE}=75 \times 9.8 \times 200 \sin 10^{\circ}$ (25530)	B1		OR $75 \times 9.8 \sin 10^{\circ}-120=75 a$	
		$\mathrm{WD}=200 \mathrm{x} 120$	B1		(M1 + A1)	
		$1 / 2.75 \mathrm{v}^{2}=$	M1		$\mathrm{a}=0.102$ (A1)	
		$1 / 2.75 .13^{2}+75 \times 9.8 \times 200 \sin 10^{\circ}-200.120$	A1		$\mathrm{v}^{2}=169+2 \mathrm{x} 0.102 \mathrm{x} 200$ (M1)	
		$14.5 \mathrm{~ms}^{-1}$	A1	5	$\mathrm{v}=14.5$	14

8	(i)	$\mathrm{R} \cos 30^{\circ}=0.1 \times 9.8$	M1		resolving vertically	
			A1			
		$\mathrm{R}=1.13 \mathrm{~N}$	A1	3		
	(ii)	$\mathrm{r}=0.8 \cos 30^{\circ}=0.693$ or $2 \sqrt{ } 3 / 5$	B1		may be implied	
		$R \cos 60^{\circ}=0.1 \times 0.693 \omega^{2}$	M1		or $0.1 \mathrm{v}^{2} / \mathrm{r}$ \& $\omega=\mathrm{v} / \mathrm{r}$	
			A1			
		$\omega=2.86$	A1	4		
	(iii)	$\mathrm{T}=1.96 \mathrm{~N}$	B1	1		
	(iv)	$R \cos 30^{\circ}=\mathrm{T} \cos 60^{\circ}+0.1 \mathrm{x} 9.8$	M1			
			A1			
		$\mathrm{R}=2.26 \mathrm{~N}$	A1			
		$\mathrm{R} \cos 60^{\circ}+\mathrm{T} \cos 30^{\circ}=0.1 \mathrm{x} \mathrm{v}^{2} / \mathrm{r}$	M1		or mr ω^{2} \& use of $\mathrm{v}=\mathrm{r} \omega$	
			A1		with $\mathrm{R}=1.13$ can get M 1 only	
		$4.43 \mathrm{~ms}^{-1}$	A1	6		14
or	(iv)	$\begin{aligned} & \text { LHS (or RHS) } \\ & \mathrm{T}+0.1 \mathrm{x} 9.8 \cos 60^{\circ} \end{aligned}$	M1*		method without finding R i.e. resolving along PA	
			A1			
		$\begin{aligned} & \text { RHS (or LHS) } \\ & 0.1 \times \mathrm{v}^{2} / \mathrm{rx} \cos 30^{\circ} \end{aligned}$	M1*			
			A1		r to be $0.8 \cos 30^{\circ}$ for A1	
		solve to find v	M1*		depends on 2* Ms above	
		$4.43 \mathrm{~ms}^{-1}$	A1	(6)		

